3.21.61 \(\int \frac {1}{\sqrt {d+e x} \sqrt {a d e+(c d^2+a e^2) x+c d e x^2}} \, dx\) [2061]

Optimal. Leaf size=84 \[ \frac {2 \tan ^{-1}\left (\frac {\sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d^2-a e^2} \sqrt {d+e x}}\right )}{\sqrt {e} \sqrt {c d^2-a e^2}} \]

[Out]

2*arctan(e^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(-a*e^2+c*d^2)^(1/2)/(e*x+d)^(1/2))/e^(1/2)/(-a*e^2+c
*d^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 84, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.051, Rules used = {674, 211} \begin {gather*} \frac {2 \text {ArcTan}\left (\frac {\sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d^2-a e^2}}\right )}{\sqrt {e} \sqrt {c d^2-a e^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[d + e*x]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(2*ArcTan[(Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(Sqrt[c*d^2 - a*e^2]*Sqrt[d + e*x])])/(Sqrt[e]
*Sqrt[c*d^2 - a*e^2])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 674

Int[1/(Sqrt[(d_.) + (e_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[2*e, Subst[Int[1/(
2*c*d - b*e + e^2*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^
2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {d+e x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx &=(2 e) \text {Subst}\left (\int \frac {1}{2 c d^2 e-e \left (c d^2+a e^2\right )+e^2 x^2} \, dx,x,\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}}\right )\\ &=\frac {2 \tan ^{-1}\left (\frac {\sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d^2-a e^2} \sqrt {d+e x}}\right )}{\sqrt {e} \sqrt {c d^2-a e^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.06, size = 97, normalized size = 1.15 \begin {gather*} \frac {2 \sqrt {a e+c d x} \sqrt {d+e x} \tan ^{-1}\left (\frac {\sqrt {e} \sqrt {a e+c d x}}{\sqrt {c d^2-a e^2}}\right )}{\sqrt {e} \sqrt {c d^2-a e^2} \sqrt {(a e+c d x) (d+e x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[d + e*x]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(2*Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*ArcTan[(Sqrt[e]*Sqrt[a*e + c*d*x])/Sqrt[c*d^2 - a*e^2]])/(Sqrt[e]*Sqrt[c*d^
2 - a*e^2]*Sqrt[(a*e + c*d*x)*(d + e*x)])

________________________________________________________________________________________

Maple [A]
time = 0.81, size = 81, normalized size = 0.96

method result size
default \(-\frac {2 \sqrt {\left (c d x +a e \right ) \left (e x +d \right )}\, \arctanh \left (\frac {e \sqrt {c d x +a e}}{\sqrt {\left (e^{2} a -c \,d^{2}\right ) e}}\right )}{\sqrt {e x +d}\, \sqrt {c d x +a e}\, \sqrt {\left (e^{2} a -c \,d^{2}\right ) e}}\) \(81\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/(e*x+d)^(1/2)*((c*d*x+a*e)*(e*x+d))^(1/2)/(c*d*x+a*e)^(1/2)/((a*e^2-c*d^2)*e)^(1/2)*arctanh(e*(c*d*x+a*e)^(
1/2)/((a*e^2-c*d^2)*e)^(1/2))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*d*x^2*e + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(x*e + d)), x)

________________________________________________________________________________________

Fricas [A]
time = 3.20, size = 230, normalized size = 2.74 \begin {gather*} \left [-\frac {\sqrt {-c d^{2} e + a e^{3}} \log \left (\frac {c d^{3} - 2 \, a x e^{3} - {\left (c d x^{2} + 2 \, a d\right )} e^{2} + 2 \, \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} \sqrt {-c d^{2} e + a e^{3}} \sqrt {x e + d}}{x^{2} e^{2} + 2 \, d x e + d^{2}}\right )}{c d^{2} e - a e^{3}}, -\frac {2 \, \arctan \left (\frac {\sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} \sqrt {c d^{2} e - a e^{3}} \sqrt {x e + d}}{c d^{2} x e + a x e^{3} + {\left (c d x^{2} + a d\right )} e^{2}}\right )}{\sqrt {c d^{2} e - a e^{3}}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="fricas")

[Out]

[-sqrt(-c*d^2*e + a*e^3)*log((c*d^3 - 2*a*x*e^3 - (c*d*x^2 + 2*a*d)*e^2 + 2*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2
+ a*d)*e)*sqrt(-c*d^2*e + a*e^3)*sqrt(x*e + d))/(x^2*e^2 + 2*d*x*e + d^2))/(c*d^2*e - a*e^3), -2*arctan(sqrt(c
*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*sqrt(c*d^2*e - a*e^3)*sqrt(x*e + d)/(c*d^2*x*e + a*x*e^3 + (c*d*x^2 + a*
d)*e^2))/sqrt(c*d^2*e - a*e^3)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {\left (d + e x\right ) \left (a e + c d x\right )} \sqrt {d + e x}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)**(1/2)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Integral(1/(sqrt((d + e*x)*(a*e + c*d*x))*sqrt(d + e*x)), x)

________________________________________________________________________________________

Giac [A]
time = 1.17, size = 110, normalized size = 1.31 \begin {gather*} \frac {2 \, \arctan \left (\frac {\sqrt {{\left (x e + d\right )} c d e - c d^{2} e + a e^{3}}}{\sqrt {c d^{2} e - a e^{3}}}\right )}{\sqrt {c d^{2} e - a e^{3}}} - \frac {2 \, \arctan \left (\frac {\sqrt {-c d^{2} e + a e^{3}}}{\sqrt {c d^{2} e - a e^{3}}}\right )}{\sqrt {c d^{2} e - a e^{3}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="giac")

[Out]

2*arctan(sqrt((x*e + d)*c*d*e - c*d^2*e + a*e^3)/sqrt(c*d^2*e - a*e^3))/sqrt(c*d^2*e - a*e^3) - 2*arctan(sqrt(
-c*d^2*e + a*e^3)/sqrt(c*d^2*e - a*e^3))/sqrt(c*d^2*e - a*e^3)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{\sqrt {d+e\,x}\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((d + e*x)^(1/2)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)),x)

[Out]

int(1/((d + e*x)^(1/2)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)), x)

________________________________________________________________________________________